34 research outputs found

    Massive Stellar Content of the Galactic Supershell GSH 305+01-24

    Full text link
    The distribution of OB stars along with that of Hα\alpha, 12^{12}CO, dust infrared emission, and neutral hydrogen is carried out in order to provide a more complete picture of interactions of the young massive stars and the observed supershell GSH 305+01-24. The studied field is located between 299l311299^\circ \le l \le 311^\circ and 5b7-5^\circ \le b \le 7^\circ. The investigation is based on nearly 700 O-B9 stars with uvbyβuvby\beta photometry currently available. The derived stellar physical parameters were used to establish a homogeneous scale for the distances and extinction of light for major apparent groups and layers of foreground and background stars in Centaurus and study the interaction with the surrounding interstellar medium. The distance to the entire Centaurus star-forming complex is revised and a maximum of the OB-star distance distribution is found at 1.8±\pm0.4 (r.m.s) kpc. The massive star component of GSH 305+01-24 is identified at about 85-90 % completeness up to 11.5-12 mag. The projected coincidence of the OB stars with the shell and the similarities between the shell's morphology and the OB-star distribution indicate a strong interaction of the stellar winds with the superbubble material. We demonstrate that these stars contribute a sufficient wind injection energy in order to explain the observed size and expansion velocity of the supershell. The derived stellar ages suggest an age gradient over the Coalsack Loop. A continuous star-formation might be taking place within the shell with the youngest stars located at its periphery and the open cluster NGC 4755 being the oldest. A layer of very young stars at 1 kpc is detected and its connection to both GSH 305+01-24 and the foreground GSH 304-00-12 H I shells is investigated.Comment: Accepted for publication in A&A. Paper consists of 11 pages, 3 tables and 9 figures. Table 1 and Table 3 will only be available from CD

    Untangling the X-ray Emission From the Sa Galaxy NGC1291 With Chandra

    Get PDF
    We present a Chandra ACIS-S observation of the nearby bulge-dominated Sa galaxy NGC1291. The X-ray emission from the bulge resembles the X-ray emission from a sub-class of elliptical and S0 galaxies with low L_X/L_B luminosity ratios. The X-ray emission is composed of a central point-like nucleus, ~50 point sources that are most likely low mass X-ray binaries (LMXBs), and diffuse gas detectable out to a radius of 120" (5.2 kpc). The diffuse gas has a global temperature of 0.32^{+0.04}_{-0.03} keV and metallicity of 0.06 +/- 0.02 solar, and both quantities marginally decrease with increasing radius. The hot gas fills the hole in the HI distribution, and the softening of the spectrum of the X-ray gas with radius might indicate a thermal coupling of the hot and cold phases of the interstellar medium as previously suggested. The integrated X-ray luminosity of the LMXBs, once normalized by the optical luminosity, is a factor of 1.4 less than in the elliptical galaxy NGC4697 or S0 galaxy NGC1553. The difference in L_{X,stellar}/L_B between the galaxies appears to be because of a lack of very bright sources in NGC1291. No sources above 3 x 10^38 ergs/s were found in NGC1291 when ~7 were expected from scaling from NGC4697 and NGC1553. The cumulative L_{X,stellar}/L_B value including only sources below 1.0 x 10^38 ergs/s is remarkably similar between NGC1291 and NGC4697, if a recent surface brightness fluctuation-determined distance is assumed for NGC4697. If this is a common feature of the LMXB population in early-type systems, it might be used as a distance indicator. Finally, a bright, variable (1.6-3.1 x 10^39 ergs/s) source was detected at the optical center of the galaxy. Its spectrum shows excess soft emission superimposed on a highly absorbed power law component, similar to what has been found in several other low luminosity AGN (ABRIDGED).Comment: 13 pages in emulateapj5 style with 11 embedded Postscript figures; minor revisions since last version; accepted by Ap

    UV properties of early-type galaxies in the Virgo cluster

    Get PDF
    We study the UV properties of a volume limited sample of early-type galaxies in the Virgo cluster combining new GALEX far- (1530 A) and near-ultraviolet (2310 A) data with spectro-photometric data available at other wavelengths. The sample includes 264 ellipticals, lenticulars and dwarfs spanning a large range in luminosity (M(B)<-15). While the NUV to optical or near-IR color magnitude relations (CMR) are similar to those observed at optical wavelengths, with a monotonic reddening of the color index with increasing luminosity, the (FUV-V) and (FUV-H) CMRs show a discontinuity between massive and dwarf objects. An even more pronounced dichotomy is observed in the (FUV-NUV) CMR. For ellipticals the (FUV-NUV) color becomes bluer with increasing luminosity and with increasing reddening of the optical or near-IR color indices. For the dwarfs the opposite trend is observed. These observational evidences are consistent with the idea that the UV emission is dominated by hot, evolved stars in giant systems, while in dwarf ellipticals residual star formation activity is more common.Comment: 5 pages, 2 figures, 1 table. Accepted for publication in Astrophysical Journal Letter

    Where is the coronal line region in active galactic nuclei?

    Get PDF
    We report the new finding that type 1 Seyfert nuclei (S1s) have excess [FeVII]6087 emission with respect to type 2s (S2s). The S1s exhibit broad emission lines which are attributed to ionized gas within 1 pc of the black hole, whereas the S2s do not show such broad lines. The current unified model of active galactic nuclei explains this difference as that the central 1 pc region in the S2s is hidden from the line of sight by a dusty torus if we observe it from a nearly edge-on view toward the torus. Therefore, our finding implies that the coronal line region (CLR) traced by the [FeVII]6087 emission resides in the inner wall of such dusty tori. On the other hand, the frequency of occurrence of the CLR in the optical spectra is nearly the same between the S1s and the S2s. Moreover, some Seyfert nuclei exhibit a very extended (~ 1 kpc) CLR. All these observational results can be unified if we introduce a three-component model for the CLR; 1) the inner wall of the dusty torus, 2) the clumpy ionized region associated with the narrow line region at distance from ~ 10 to ~ 100 pc, and 3) the extended ionized region at distance ~ 1 kpc.Comment: 10 pages, 3 figures, aaspp4.sty. To appear in ApJ Letter

    GALEX UV Color Relations for Nearby Early-Type Galaxies

    Get PDF
    We use GALEX/optical photometry to construct color-color relationships for early-type galaxies sorted by morphological type. We have matched objects in the GALEX GR1 public release and the first IR1.1 internal release, with the RC3 early-type galaxies having a morphological type -5.5<T<-1.5 with mean error in T<1.5, and mean error on (B-V)T<0.05. After visual inspection of each match, we are left with 130 galaxies with a reliable GALEX pipeline photometry in the far-UV and near-UV bands. This sample is divided into Ellipticals (-5.5<T<-3.5) and Lenticulars (-3.5<T<-1.5). After correction for the Galactic extinction, the color-color diagrams FUV-NUV vs. (B-V)_{Tc} are plotted for the two subsamples. We find a tight anti-correlation between the FUV-NUV and (B-V)_{Tc} colors for Ellipticals, the UV color getting bluer when the (B-V)_{Tc} get redder. This relationship very likely is an extension of the color-metallicity relationship into the GALEX NUV band. We suspect that the main source of the correlation is metal line blanketing in the NUV band. The FUV-NUV vs B-V correlation has larger scatter for lenticular galaxies; we speculate this reflects the presence of low level star formation. If the latter objects (i.e. those that are blue both in FUV-NUV and B-V) are interpreted as harboring recent star formation activity, this would be the case for a few percent (~4%) of Ellipticals and ~15% of Lenticulars; this would make about 10% of early-type galaxies with residual star formation in our full sample of 130 early-type galaxies. We also plot FUV-NUV vs. the Mg_2 index and central velocity dispersion. We find a tight anti-correlation between FUV-NUV and the Mg_2 index(...).Comment: 25 pages, 5 figures, accepted for publication in ApJS (abstract abridged), typos corrected in section 2.

    Galactic Structure Toward the Carina Tangent

    Full text link
    This investigation presents a photometric study of the Galactic structure toward the Carina arm tangent. The field is located between 280 deg and 286 deg galactic longitude and -4 deg to 4 deg galactic latitude. All currently available uvbybeta data is used to obtain homogeneous color excesses and distances for more than 260 stars of spectral types O to G. We present revised distances and average extinction for the open clusters and cluster candidates NGC 3293, NGC 3114, Loden 46 and Loden 112. The cluster candidate Loden 112 appears to be a very compact group at a true distance modulus of 11.06 +\- 0.11 (s.e.) (1629 +84,-80 pc), significantly closer than previous estimates. We found other OB stars at that same distance and, based on their proper motions, suggest a new OB association at coordinates 282 deg < l < 285 deg, -2 deg < b < 2 deg. Utilizing BV photometry and spectral classification of the known O-type stars in the very young open cluster Wd 2 we provide a new distance estimate of 14.13 +\-0.16 (s.e.) (6698 +512,-475 pc), in excellent agreement with recent distance determinations to the giant molecular structures in this direction. We also discuss a possible connection between the HII region RCW 45 and the highly-reddened B+ star CPD -55 3036 and provide a revised distance for the luminous blue variable HR Car.Comment: accepted to PAS

    Iron is not Depleted in High-Ionization Nuclear Emission-Line Regions of Active Galactic Nuclei

    Get PDF
    In order to examine whether or not high-ionization nuclear emission-line regions (HINERs) in narrow-line regions of active galactic nuclei are dusty, we focus on two high-ionization forbidden emission lines, [Fe VII]6087 and [Ne V]3426. We perform photoionization model calculations to investigate possible dependences of the flux ratio of [Fe VII]6087/[Ne V]3426 on various gas properties, in order to investigate how useful this flux ratio to explore the dust abundances in HINERs. Based on our photoionization model calculations, we show that the observed range of the flux ratio of [Fe VII]6087/[Ne V]3426 is consistent with the dust-free models while that is hard to be explained by the dusty models. This suggests that iron is not depleted at HINERs, which implies that the HINERs are not dusty. This results is consistent with the idea that the HINERs are located closer than the dust-sublimation radius (i.e., inner radius of dusty tori) and thus can be hidden by dusty tori when seen from a edge-on view toward the tori, which has been also suggested by the AGN-type dependence of the visibility of high-ionization emission lines.Comment: 8 pages including 4 figures, to appear in The Astronomical Journa

    Near-infrared spectroscopy of stellar populations in nearby spiral galaxies

    Full text link
    We present high spatial resolution, medium spectral resolution near-infrared (NIR) H- and K-band long-slit spectroscopy for a sample of 29 nearby (z < 0.01) inactive spiral galaxies, to study the composition of their NIR stellar populations. These spectra contain a wealth of diagnostic stellar absorption lines, e.g. MgI 1.575 micron, SiI 1.588 micron, CO (6-3) 1.619 micron, MgI 1.711 micron, NaI 2.207 micron, CaI 2.263 micron and the 12CO and 13CO bandheads longward of 2.29 micron. We use NIR absorption features to study the stellar population and star formation properties of the spiral galaxies along the Hubble sequence, and we produce the first high spatial resolution NIR HK-band template spectra for low redshift spiral galaxies along the Hubble sequence. These templates will find applications in a variety of galaxy studies. The strength of the absorption lines depends on the luminosity and/or temperature of stars and, therefore, spectral indices can be used to trace the stellar population of galaxies. The entire sample testifies that the evolved red stars completely dominate the NIR spectra, and that the hot young star contribution is virtually nonexistent.Comment: 13 pages, 5 figures. Accepted to MNRAS. arXiv admin note: text overlap with arXiv:astro-ph/040313

    Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    Get PDF
    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
    corecore